
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 1

Route-Saver: Leveraging Route APIs for Accurate and Efficient Query Processing

At Location-Based Services

Ms. V.Bhagya Lakshmi , Mr.P.VIJAYA RAGHAVULU

Abstract: Location-based services (LBS)

enable mobile users to query points-of-

interest (e.g., restaurants, cafes) on various

features (e.g., price, quality, variety). In

addition, users require accurate query results

with up-to-date travel times. Lacking the

monitoring infrastructure for road traffic, the

LBS may obtain live travel times of routes

from online route APIs in order to offer

accurate results. Our goal is to reduce the

number of requests issued by the LBS

significantly while preserving accurate

query results. First, we propose to exploit

recent routes requested from route APIs to

answer queries accurately. Then, we design

effective lower/upper bounding techniques

and ordering techniques to process queries

efficiently. Also, we study parallel route

requests to further reduce the query

response time. Our experimental evaluation

shows that our solution is three times more

efficient than a competitor, and yet achieves

high result accuracy (above 98 percent).

1INTRODUCTION

The availability of GPS-equipped

smartphones leads to a huge demand of

location-based services (LBSs), like city

guides, restaurant rating, and shop

recommendation websites, e.g., Open Table,

Hotels, and UrbanSpoon.1 They manage

points-of-interest (POIs) specific to their

applications, and enable mobile users to

query for POIs that match with their

preferences and time constraints. As an

example, consider a restaurant rating

website that manages a data set of

restaurants P with various attributes like:

location, food type, quality, price, etc. Via

the LBS (website), a mobile user q could

query restaurants based on these attributes as

well as travel times on road network to reach

them. Here are examples for a range query

and a KNN query, based on travel times on

road network.

Revenues. Similarly, high response time

may drive users away from the LBS.

Observe that the live travel times from user

q to POIs vary dynamically due to road

traffic and factors like rush hours,

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 2

congestions, road accidents. As a case study,

query results (for range and KNN) would

have low accuracy. Typical LBS lacks the

infrastructure and resources (e.g., road-side

sensors, cameras) for monitoring road traffic

and computing live travel times. To meet the

accuracy requirement (R1), the framework is

proposed for the LBS to answer KNN

queries accurately by retrieving live travel

times (and routes) from online route APIs

(e.g., Google Directions API which have

live traffic .Given a query q, the LBS first

filters POIs by local attributes in P. Next,

the LBS calls a route API to obtain the

routes (and live travel times) from q to each

remaining POI, and then determines

accurate query results for the user. As a

remark, online maps on the other hand,

cannot process queries for, because those

queries may involve specific attributes (e.g.,

quality, price, facility) that are only

maintained by the LBS.

Using online route APIs raises challenges

for the LBS in meeting the response time

requirement (R2). It is important for LBS to

reduce the number of route requests for

answering queries because a route request

incurs considerable time (0.1-0.3 s) which

is high compared to CPU time at LBS.

obtains the latest travel times for queries

from online route API. Though it guarantees

accurate query results, it may still incur a

considerable number of route requests. In

this paper, we exploit an observation from,

namely that travel times change smoothly

within a short duration. Routes recently

obtained from online route APIs may still

provide accurate travel times to answer

current queries. This property enables us to

design a more efficient solution for

processing range and KNN queries. Our

experiments show that our solution is three

times more efficient and yet achieves high

result accuracy (above 98 percent).

Route-Saver keeps at the LBS the routes

which were obtained in the past d minutes

(from an online route API), where d is the

expiry time parameter. For instance, we may

set d to 10 minutes. These recent routes are

then utilized to derive lower/upper bounding

travel times to reduce the number of route

requests for answering range and KNN

queries. Another related work studies how

to cache shortest paths for reducing the

response times on answering shortest path.

They mainly exploit the optimal sub path

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 3

property of shortest paths, i.e., all sub paths

of a shortest path must also be shortest

paths. Given a shortest path query, if both

nodes s; t fall on the same (cached) shortest

path, then the Shortest path from s to t can

be extracted from that cached path.

Unfortunately, this optimal sub path

property is not powerful enough in reducing

the number of route requests significantly in

our problem. This is because each path

contains a few data points and thus the

probability for points lying on the same path

with the query point is small. We show in an

experiment that the optimal sub path

property (‘tL’ in black) saves very few route

requests, whereas our techniques provide

the major savings in route requests.

Furthermore not considered the expiry time

requirement as in our work. To reduce the

number of route requests while providing

accurate results, we combine information

across multiple routes in the log to derive

tight lower/upper bounding travel times.

We also propose effective techniques to

compute such bounds efficiently. Moreover,

we examine the effect of different orderings

for issuing route requests on saving route

requests. And we study how to parallelize

route requests in order to reduce the query

response time further. In the following, we

first review related. Then, we describe the

system architecture and our objectives. Our

contributions are: _ Combine information

across multiple routes in the log to derive

lower/upper bounding travel times

2 RELATED WORKS

2.1 Query Processing on Road Networks

Indexing on road networks have been

extensively studied in the. Various shortest

path indices have been developed to support

shortest path search efficiently how to

process range queries and KNN queries over

points-of-interest, with respect to shortest

path distances on a road network. The

evaluation of range queries and KNN

queries can be further accelerated by

specialized indices. In our problem

scenario, query users require accurate

results that are computed with respect to live

traffic information. All the above works

require the LBS to know the weights (travel

times) of all road segments. Since the LBS

lacks the infrastructure for monitoring road

traffic, the above works are inapplicable to

our problem. Some works attempt to model

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 4

the travel times of road segments as time-

varying functions, which can be extracted

from historical traffic patterns. These

functions may capture the effects of periodic

events (e.g., rush hours, weekdays).

Nevertheless, they still cannot reflect live

traffic information, which can be affected by

sudden events, e.g., congestions, accidents

and road maintenance. Landmark and

distance oracle can be applied to estimate

shortest path distance bounds between two

nodes in a road network, which can be used

to prune irrelevant objects and early detect

results. The above works are inapplicable to

our problem because they consider constant

travel times on road segments (as opposed

to live traffic). Furthermore, in this paper,

we propose novel lower/upper travel time

bounds derived from both the road network

and the information of previously obtained

routes.

2.2 Querying on Online Route APIs

Online route APIs. An online route API has

access to current traffic information. It takes

a route request as input and then returns a

route along with travel times on the request

is an HTTP query string, whose parameters

contain the origin and destination locations

in latitude-longitude, as well as the travel

mode. In this example, the origin is at

(44:94033;_93:22294), the destination is at

(44:94198;_93:23722), and the user is at

‘driving’ mode. The response is an XML

document that stores a sequence of route

segments from the origin to the destination.

Each segment, enclosed by <step> tags,

contains its endpoints and its travel time by

driving (see the <duration> tags). The

segment in this example takes 8 seconds to

travel. We omit the remaining segments here

for brevity. Besides, the XML response

contains the total travel time on this route

(the sum of travel times on all segments).

Query processing algorithms. Thomsen et

al. study the caching of shortest paths

obtained from online route APIs. They

exploit the optimal son cached paths to

answer shortest path queries. As we

discussed in the introduction and verified in

experiments, this property cannot

significantly reduce the number of route

requests in our problem. Also, they have not

studied the processing of range/KNN

queries; the lower/upper bound techniques.

It enables the LBS to process KNN

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 5

queries by using online route APIs. To

reduce the number of route requests (for

processing queries), exploits the maximum

driving speed VMAX and the static road

network GS (with only distance

information) stored at the LBS. Upon

receiving a KNN query from user q, the

LBS first retrieves K objects with the

smallest network distance from q and issues

route requests for them. Let g be the Kth

smallest current travel time (obtained so

far). The LBS inserts into a candidate set C

the objects whose network distance to q is

within g _ VMAX. Next, groups the points

in C to road junctions, utilizes historical

statistics to order the road junctions, and

then issues route requests for junctions in

above order. However, they do not exploit

the rich information of routes

that are specific in our problem. In our

problem, the exact route from q to p reveals

not only the current travel time to p, it may

also provide the current travel times to other

objects p0 on the route, and may even offer

tightened lower/upper bounds of travel

times to other objects.

3 PROBLEM STATEMENTS

In this section, we first describe the system

architecture and then formulate the

objectives of our problem. System

architecture and notations. In this paper, we

adopt the system architecture as depicted. It

consists of the following entities: Online

Route API. Examples are: Google/Bing

route APIs. Such API computes the shortest

route between two points on a road network,

based on liv. It has the latest road network G

with live travel time information. _ Mobile

User. Using a mobile device (smartphone),

the user can acquire his current geo-location

q and then issue queries to a location-based

server. In this paper, we consider range and

KNN queries based on live traffic. _

Location-Based Service/Server. It provides

mobile users with query services on a data

set P, whose POIs (e.g., restaurants, cafes)

are specific to the LBS’s application. The

LBS may store a road network G with edge

weights as spatial distances, however G

cannot provide live travel times. In case P

and G do not fit in main memory, the LBS

may store P as an R-tree and store the G as a

disk-based adjacency list .We then define

route, travel time, and queries formally.

 4 QUERY PROCESSING

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 6

This section presents our approach Route-

Saver for answering queries efficiently.

First, we discuss the maintenance of the

time-tagged road network G and the route

log. Finally, we discuss the applicability of

our techniques when no local maps are

available. In subsequent discussion, we drop

the subscript t in as we only use valid routes.

4.1 Maintenance of Structures at LBS

Conservative travel time bounds. Given an

edge Observe that the lower-bound is

limited by the euclidean distance of e and

the maximum driving speed.

VMAX: (1) On the other hand, the upper-

bound ¼ 1 because the travel time one can

be arbitrarily long in case of traffic

congestion. Structures. We employ a route

log L and a time-tagged network G in the

LBS. The route log L stores all routes

obtained from an online route API within

the last d time units, as described. Recall

from that the timestamp of a route indicated

by its subscript t. Assume that we use d ¼ 2

in Fig. 4a. At time tow ¼ 4, L keeps the

routes obtained during time 2-4. To support

query operations efficiently,

4.2 Exact Travel Times and Their Bounds

In this section, we exploit the time-tagged

road network G and the route log L to derive

lowers and upper bounds of travel times for

data points. As we will elaborate soon, these

bounds enable us to save route requests

during query processing. L contains only

valid routes (not yet expired). For the time

tagged network G, solid edges are valid

while dotted edges are not.

4.3 Range Query Algorithm

In this section, we present our Route-Saver

algorithm for processing a range query. It

applies the travel time bounds discussed

above to reduce the number of route

requests. To guarantee the accuracy of

returned results, it removes all expired

routes CT in L. The algorithm first conducts

a distance range search to obtain a set C of

candidate points. Two phases to process the

candida

4.4 KNN Query Algorithm

we extend our Route-Saver algorithm for

processing KNN queries. We will also

examine suitable orderings for processing

candidates. Unlike range queries, KNN

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 7

queries do not have a (fixed) travel time

limit T for obtaining a small candidate set.

Instead, we first compute a (temporary)

result set R so that it contains K candidates

with the smallest. Recall that we can obtain

these bounds/values for all candidates

efficiently by traversal on G. Let g be the

largest R. Having this value g, we can prune

each candidate p that satisfies, as it cannot

become the result. The pseudo-code of our

KNN algorithm. First, we initialize the

candidate set C with the data set P, insert K

dummy pairs (with 1 travel time) into the

result set R, and set g to the largest travel

time in R. The algorithm consists of three

phases. In the first phase, it obtains g by

using the idea discussed above. In the

second phase, it prunes candidates whose

lower bounds or exact times are larger than

g. In the third phase, it examines the

candidates according to a certain order and

issues route requests for them. The

algorithm terminates when the candidate set

contains exactly K objects, and then reports

them as query results.

4.5 Applicability of Techniques without

Map

In this section, we discuss how to adapt the

Route-Saver in case the LBS cannot obtain

the same map G used in the route service.

We observe that, if the LBS uses the map

G0 which are not the same with that used in

route services, bounding travel times G can

be over-estimated. For example, if the real

shortest path from q top is missing local map

G0, then it is possible that Route-Saver

calculates a higher G for p and mistakenly

prunes it from results. Therefore, the LBS

are not allowed to use inaccurate maps. In

case that the LBS cannot access to the map

G used.

5 PARALLELIZED ROUTE

REQUESTS

Our objective is to minimize the response

time of queries. Optimizes the response time

through reducing the number of route

requests. In this section, we examine how to

parallelize route requests in order to

optimize user response time further. We

propose two parallelization techniques that

achieve different tradeoffs on the number of

route requests and user response time. The

execution of algorithms follows a sequential

schedule. The user response time (i) the time

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 8

spent on route requests and (ii) local

computation at the LBS (in white).

Consider the sequential schedule in. An

experiment reveals that the user response

time is dominated by the time spent on route

requests. Let a slot be the waiting period to

obtain a route from the route API.2 the

sequential schedule takes five slots for five

route requests. Intuitively, the LBS may

reduce the number of slots by issuing

multiple route requests to a route API in

parallel. a parallel schedule with two slots;

each slot contains three route requests issued

in parallel. Although parallelization helps

reduce the response time, it may prevent

sharing among routes and because extra

route requests as we will explain later.

Existing parallel scheduling techniques have

not. Exploited this unique feature in our

problem. We also want to avoid extra route

requests because a route API may impose a

daily route request or charge the LBS based

on route requests. We proceed to present

two parallelization techniques. They

achieve different tradeoffs on the number of

route requests and the number of slots. Our

discussion focuses on range queries only.

Our techniques can be extended to KNN

queries as well. Greedy parallelization. Let

me be the number of threads for parallel

execution (per query). Our greedy

parallelization approach dispatches route

request to a thread as soon as it becomes

available. Specifically, we modify as

follows. Instead of picking one object p

from the candidate set C we pick m

candidate objects and assign their route

requests to m threads in parallel.

6 EXPERIMENTAL EVALUATION

In this section, we compare the accuracy and

the performance of our Route-Saver

(abbreviated as RS) with an existing

method SMashQ. lthough SMQ handles

only KNN queries, we also adapt it to

process range queries. Note that SMQ does

not utilize any route log to save route

requests. We also consider an extension of

SMQ, called SMQ_, which keeps the routes

within expiry time into a route log. SMQ_

applies only the optimal sub path property

and retrieves exact travel times from the log;

however, it does not apply the upper/lower

bounding techniques in this paper. By

default, RS uses the DESC and DIFF

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 9

orderings for range and KNN queries r

pectively.

6.1 Experimental Setting Road networks.

 For accuracy experiments on real traffic

data, we will discuss the road network and

traffic data For the performance and

scalability study, we obtain three road maps

in USA its number of route requests and

user response time (summarizes the default

values and ranges of parameters used in our

experiments. The values for data set size.

The default expiry time d is 10 minutes,

according. To simulate the arrival of queries,

we set the default query rate _ to 60 queries/

min and uniformly generate query points on

the road network. This query rate (60

queries/min) is justified by visit statistics3

from restaurant and travel guide websites .

All methods were implemented in C++ and

ran on an Ubuntu 11.10 machine with a 3.4

GHz Intel Core i7-3770 processor and 16

GB RAM. In experiments, the route log

contains at most 30,000 routes and occupies

at most 30 MB. The largest road network

(Florida) and data set occupies 87 and 1

MB respectively. Thus, the largest map,

route log, anddata set can fit in the main

memory.

6.2 Accuracy on Real Traffic Data

In this section, we test the result accuracy of

the methods on real traffic data, for various

expiry time d (2, 5, 10, 20 and 30 minutes).

Other parameters are set to default values.

Real traffic data. We downloaded historical

real traffic on freeways in Los Angeles

from PeMS.4 The corresponding road

network contains 17,563 nodes and 17,694

edges. the travel times on edges are updated

every 30 seconds. We also conduct this

experiment with traffic data on other dates,

and obtain similar results.Accuracy measure.

Besides the methods discussed before, we

also consider a baseline method which uses

only local distance information to answer

queries, without issuing route requests.

6.3 Performance and Scalability Study

For the sake of obtaining the user response

time in our simulations, we measure the time

of route requests on Google Directions API.

On each roadmap, we randomly sample 400

pairs of points and issue route requests for

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 10

them to Google Directions API. plots the

time of each route request versus its length

(exact travel time), on the Erie roadmap.

summarizes the average and standard

deviation of route request time on all

roadmaps.

6.3.1 Temporal Stability

In this section, we simulate the arrival of

queries along a 60- minute (1-hour)

timeline, while fixing all parameters to

default. Thus, each test uses 60 _ _ ¼ 3;600

queries. The route log L is initially empty.

To report temporal behavior, we measure (i)

the route log size and (ii) the number of

route requests of each query. We first

conduct experiments with uniformly

distributed queries and data sets. the number

of routes in L of RS and SMQ_ versus the

timeline, for range queries. SMQ is not

plotted here as it does not utilize the log L.

6.3.2 Effect of Optimization Techniques

First, we investigate the effectiveness of our

proposed lower/upper bound techniques.

Recall that RS exploits the travel time

information obtained from recent routes for

three techniques: (i) retrieve the exact travel

time of a point p, (ii) prune p by its lower

bound; p:t_I and (iii) detect p as a true hit by

its upper bound.

6.3.3 Scalability Experiments

As discussed before, in this section, we

simulate the arrival of queries along 2d-

minute time interval. And we measure the

performance in terms of: (i) average number

of route requests per query in the stable

period, and (ii) average user response time

per query in the stable.

6.4 Experiments on Google Directions

API

We have implemented SMQ, SMQ_ and RS

with Google Directions request/response

format has been described. Due to the daily

request limit (2,500) for evaluation users .we

conduct this experiment on the Manhattan

region .We randomly select 100 POIs5 in

this region, and generate 100 queries (along

a 100-second time period). depicts the

number of route requests of each query

versus the timeline, for range queries and

KNN queries. RS outperforms SMQ and

SMQ_ on both range queries and KNN

queries.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 11

7 CONCLUSION

In this paper, we propose a solution for the

LBS to process range/KNN queries such that

the query results have accurate travel times

and the LBS incurs few number of route

requests. Our solution Route-Saver collects

recent routes obtained from an online route

API (within d minutes). During query

processing, it exploits those routes to derive

effective lower-upper bounds for saving

route requests, and examines the candidates

for queries in an effective order. We have

also studied the parallelization of route

requests to further reduce query response

time. Our experimental evaluation shows

that Route-Saver is 3 times more efficient

than a competitor, and yet achieves high

result accuracy (above 98 percent). In

future, we plan to investigate automatic

tuning the expiry time d based on a given

accuracy requirement. This would help the

LBS guarantee its accuracy and improve

their users’ satisfaction.

8 REFERENCES

[1] 2011 Census TIGER/Line Shapefiles.

(2011).[Online].Available:http://www.censu

s.gov/cgi-bin/geo/shapefiles2011/main

[2] 9th DIMACS Implementation Challenge

on Shortest Paths.(2013).[Online].

Available:http://www.dis.uniroma1.it/challe

nge9/ data/tiger/

[3] Bing Data Suppliers. (2013). [Online].

Available:http://windows.microsoft.com/en-

HK/windows-live/about-bing-data-supplie

rs/

[4] Bing Maps API. (2013). [Online].

Available: http://www.

microsoft.com/maps/developers/web.aspx

[5] Bing Maps Licensing and Pricing

Information. (2013). [Online]. Available:

http://www.microsoft.com/maps/product/lic

ensing. aspx

[6] Google Directions & Bing Maps: Live

Traffic Information.(2013).[Online].

Available:

http://support.google.com/maps/bin/answer.

py?hl=en&answer=2549020&topic=168735

6&ctx=topic http://msdn.microsoft.com/en-

us/library/aa907680.aspx

[7] Google Directions API. (2013). [Online].

Available:https://developers.google.com/ma

ps/documentation/directions/

http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/
http://windows/
http://www/
http://www.microsoft.com/maps/product/licensing
http://www.microsoft.com/maps/product/licensing
http://support.google.com/maps/bin/answer.py?hl=en&answer=2549020&topic=1687356&ctx=topic
http://support.google.com/maps/bin/answer.py?hl=en&answer=2549020&topic=1687356&ctx=topic
http://support.google.com/maps/bin/answer.py?hl=en&answer=2549020&topic=1687356&ctx=topic

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 12

[8] Google Directions API Usage Limits.

(2013).[Online].Available:https://developers

.google.com/maps/faq#usagelimits

[9] Google Map Maker Data Download.

(2013).[Online].Available:https://services.go

ogle.com/fb/forms/mapmakerdatadownload/

[10] OpenStreetMap. (2013). [Online].

Available: http://www. openstreetmap.org/

[11] Statistics of Usage. (2013). [Online].

Available: http://www. quantcast.com

[12] US Maps from Government. (2013).

[Online].Available:http://www.usgs.gov/pub

prod/

[13] N. Bruno, S. Chaudhuri, and L.

Gravano, “STHoles: A multidimensional

workload-aware histogram,” in Proc. ACM

SIGMOD Int. Conf. Manage. Data, 2001,

pp. 211–222.

[14] E. P. F. Chan and Y. Yang, “Shortest

path tree computation in dynamic graphs,”

IEEE Trans. Comput., vol. 58, no. 4, pp.

541–557, Apr. 2009.

[15] T. H. Cormen, C. E. Leiserson, R. L.

Rivest, and C. Stein, Introduction to

Algorithms. Cambridge, MA, USA: MIT

Press, 2009.

[16] U. Demiryurek, F. B. Kashani, C.

Shahabi, and A. Ranganathan, “Online

computation of fastest path in time-

dependent spatial networks,” in Proc. 12th

Int. Symp. Adv. Spatial Temporal

Databases, 2011, pp. 92–111.

[17] A. Dingle and T. Partl, “Web cache

coherence,” Comput. Netw., vol. 28, pp.

907–920, 1996.

[18] M. Drozdowski, Scheduling for Parallel

Processing, 1st ed. New York, NY, USA:

Springer, 2009.

[19] H. Hu, D. L. Lee, and V. C. S. Lee,

“Distance indexing on road networks,” in

Proc. 32nd Int. Conf. Very Large Data

Bases, 2006, pp. 894–905.

[20] S. Jung and S. Pramanik, “An efficient

path computation model for hierarchically

structured topographical road maps,” IEEE

Trans. Knowl. Data Eng., vol. 14, no, 5, pp.

1029–1046, Sep./Oct. 2002.

[21] E. Kanoulas, Y. Du, T. Xia, and D.

Zhang, “Finding fastest paths on a road

http://www/
http://www/

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 13

network with speed patterns,” in Proc. Int.

Conf. Data Eng., 2006, p. 10.

[22] M. Kolahdouzan and C. Shahabi,

“Voronoi-based K nearest neighbor search

for spatial network databases,” in Proc. 30th

Int. Conf. Very Large Data Bases, 2004, pp.

840–851.

[23] H.-P. Kriegel, P. Kr€oger, P. Kunath,

and M. Renz, “Generalizing the optimality

of multi-step k -nearest neighbor query

processing,” in Proc. 10th Int. Symp. Adv.

Spatial Temporal Databases, 2007, pp. 75–

92.

[24] H.-P. Kriegel, P. Kr€oger, M. Renz,

and T. Schmidt,, “Hierarchical graph

embedding for efficient query processing in

very large traffic networks,” in Pro

[25] H.-P. Kriegel, P. Kr€oger, M. Renz,

and T. Schmidt, “Proximity queries in large

traffic networks,” in Proc. 15th Annu. ACM

Int. Symp. Adv. Geographic Inform. Syst.,

2007, p. 21.

[26] D. Papadias, J. Zhang, N. Mamoulis,

and Y. Tao, “Query processing in spatial

network databases,” in Proc. 29th Int. Conf.

Very Large Data Bases, 2003, pp. 802–813.

[27] M. Qiao, H. Cheng, L. Chang, and J. X.

Yu, “Approximate shortest distance

computing: A query-dependent local

landmark scheme,” in Proc. IEEE 28th Int.

Conf. Data Eng., 2012, pp. 462–473.

[28] H. Samet, J. Sankaranarayanan, and H.

Alborzi, “Scalable network distance

browsing in spatial databases,” in Proc.

ACM SIGMOD Int. Conf. Manage. Data,

2008, pp. 43–54.

[29] J. Sankaranarayanan and H. Samet,

“Distance oracles for spatial networks,” in

Proc. IEEE Int. Conf. Data Eng., 2009, pp.

652–663.

[30] T. Seidl and H.-P. Kriegel, “Optimal

multi-step k-nearest neighbor search,” in

Proc. ACM SIGMOD Int. Conf. Manage.

Data, 1998, pp. 154–165.

[31] J. R. Thomsen, M. L. Yiu, and C. S.

Jensen, “Effective caching of shortest paths

for location-based services,” in Proc. ACM

SIGMOD Int. Conf. Manage. Data, 2012,

pp. 313–324.

[32] D. Zhang, C.-Y. Chow, Q. Li, X.

Zhang, and Y. Xu, “Efficient evaluation of

k-NN queries using spatial mashups,” in

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 14

Proc. 12th Int. Conf. Adv. Spatial Temporal

Databases, 2011, pp. 348–366.

Author’s Details

 .P.VIJAY received M.Tech(CSE)

Degree from School of

Information Technology,

Autonomous, and Affiliated to

JNTUH, Hyderabad. He is currently

working as Assistant Professor in the

Department of Computer Science and

Engineering in Modugula Kalavatamma

Institute of Technology for Women,

Anathapur,Andhra Pradesh India. His

interests includes Object Oriented

Programming, Operating System, Database

Management System, Computer

Networking, Cloud Computing and

Software Quality Assurance.

Ms. V.Bhagya Lakshmi B.Tech

Degree from Modugula

Kalavatamma Institute of

Technology for

Women,anathapur. SHe is

currently pursuing M.tech Degree in

Computer Science and Engineering

specialization in Modugula Kalavatamma

Institute of Technology for

Women,Anathapur,AndhraPradesh.

