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Route-Saver: Leveraging Route APIs for Accurate and Efficient Query Processing 

At Location-Based Services 
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Abstract: Location-based services (LBS) 

enable mobile users to query points-of-

interest (e.g., restaurants, cafes) on various 

features (e.g., price, quality, variety). In 

addition, users require accurate query results 

with up-to-date travel times. Lacking the 

monitoring infrastructure for road traffic, the 

LBS may obtain live travel times of routes 

from online route APIs in order to offer 

accurate results. Our goal is to reduce the 

number of requests issued by the LBS 

significantly while preserving accurate 

query results. First, we propose to exploit 

recent routes requested from route APIs to 

answer queries accurately. Then, we design 

effective lower/upper bounding techniques 

and ordering techniques to process queries 

efficiently. Also, we study parallel route 

requests to further reduce the query  

response time. Our experimental evaluation 

shows that our solution is three times more 

efficient than a competitor, and yet achieves 

high result accuracy (above 98 percent). 

1INTRODUCTION 

The availability of GPS-equipped 

smartphones leads to a huge demand of 

location-based services (LBSs), like city 

guides, restaurant rating, and shop 

recommendation websites, e.g., Open Table, 

Hotels, and UrbanSpoon.1 They manage 

points-of-interest (POIs) specific to their 

applications, and enable mobile users to 

query for POIs that match with their 

preferences and time constraints. As an 

example, consider a restaurant rating 

website that manages a data set of 

restaurants P with various attributes like: 

location, food type, quality, price, etc. Via 

the LBS (website), a mobile user q could 

query restaurants based on these attributes as 

well as travel times on road network to reach 

them. Here are examples for a range query 

and a KNN query, based on travel times on 

road network.  

Revenues. Similarly, high response time 

may drive users away from the LBS.  

Observe that the live travel times from user 

q to POIs vary dynamically due to road 

traffic and factors like rush hours, 
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congestions, road accidents. As a case study, 

query results (for range and KNN) would 

have low accuracy.  Typical LBS lacks the 

infrastructure and resources (e.g., road-side 

sensors, cameras) for monitoring road traffic 

and computing live travel times. To meet the 

accuracy requirement (R1), the framework is 

proposed for the  LBS to answer KNN 

queries accurately by retrieving live  travel 

times (and routes) from online route APIs 

(e.g., Google  Directions API which have 

live traffic  .Given a query q, the LBS first 

filters POIs  by local attributes in P. Next, 

the LBS calls a route API to obtain the 

routes (and live travel times) from q to each 

remaining POI, and then determines 

accurate query results for the user. As a 

remark, online maps on the other hand, 

cannot process queries for, because those 

queries may involve specific attributes (e.g., 

quality, price, facility) that are only 

maintained by the LBS.  

Using online route APIs raises challenges 

for the LBS in meeting the response time 

requirement (R2). It is important for LBS to 

reduce the number of route requests for 

answering  queries because a route request 

incurs considerable time  (0.1-0.3 s) which 

is high compared to CPU time at LBS. 

obtains the latest travel times for queries 

from online route API. Though it guarantees 

accurate query results, it may still incur a 

considerable number of route requests. In 

this paper, we exploit an observation from,  

namely that travel times change smoothly 

within a short  duration. Routes recently 

obtained from online route APIs  may still 

provide accurate travel times  to answer 

current queries. This property enables us to 

design a more efficient solution for 

processing range and  KNN queries. Our 

experiments show that our solution is three 

times more efficient and yet achieves  high 

result accuracy (above 98 percent).  

Route-Saver keeps at the LBS the routes 

which were obtained in the past d minutes 

(from an online route API), where d is the 

expiry time parameter. For instance, we may 

set d to 10 minutes. These recent routes are 

then utilized to derive lower/upper bounding 

travel times to reduce the number of route 

requests for answering range and KNN 

queries.  Another related work studies how 

to cache shortest paths for reducing the 

response times on answering shortest path.  

They mainly exploit the optimal sub path 
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property of shortest paths, i.e., all sub paths 

of a shortest path must also be shortest 

paths. Given a shortest path query, if both 

nodes s; t fall on the same (cached) shortest 

path, then the Shortest path from s to t can 

be extracted from that cached path. 

Unfortunately, this optimal sub path 

property is not powerful enough in reducing 

the number of route requests significantly in 

our problem. This is because each path 

contains a few data points and thus the 

probability for points lying on the same path 

with the query point is small. We show in an 

experiment that the optimal sub path 

property (‘tL’ in black) saves very few route 

requests, whereas our techniques  provide 

the major savings in route requests. 

Furthermore not considered the expiry time 

requirement as in our work. To reduce the 

number of route requests while providing 

accurate results, we combine information 

across multiple routes in the log to derive 

tight lower/upper bounding travel  times. 

We also propose effective techniques to 

compute such bounds efficiently. Moreover, 

we examine the effect of different orderings 

for issuing route requests on saving route 

requests. And we study how to parallelize 

route requests in order to reduce the query 

response time further. In the following, we 

first review related. Then, we describe the 

system architecture and our objectives. Our 

contributions are: _ Combine information 

across multiple routes in the log to derive 

lower/upper bounding travel times 

2 RELATED WORKS 

2.1 Query Processing on Road Networks 

Indexing on road networks have been 

extensively studied in the. Various shortest  

path indices have been developed to support 

shortest path search efficiently how to 

process range queries and KNN queries over 

points-of-interest, with respect to shortest 

path distances on a road network. The 

evaluation of range queries and  KNN 

queries can be further accelerated by 

specialized indices.  In our problem 

scenario, query users require accurate  

results that are computed with respect to live 

traffic information. All the above works 

require the LBS to know the weights (travel 

times) of all road segments. Since the LBS 

lacks the infrastructure for monitoring road 

traffic, the above works are inapplicable to 

our problem. Some works  attempt to model 
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the travel times of road segments as time-

varying functions, which can be extracted 

from historical traffic patterns. These 

functions may capture the effects of periodic 

events (e.g., rush hours, weekdays). 

Nevertheless, they still cannot reflect live 

traffic information, which can be affected by 

sudden events, e.g.,  congestions, accidents 

and road maintenance.  Landmark and 

distance oracle can  be applied to estimate 

shortest path distance bounds  between two 

nodes in a road network, which can be  used 

to prune irrelevant objects and early detect 

results. The above works are inapplicable to 

our problem because they consider constant 

travel times on road segments  (as opposed 

to live traffic). Furthermore, in this paper, 

we propose novel lower/upper travel time  

bounds derived from both the road network 

and the information of previously obtained 

routes.  

2.2 Querying on Online Route APIs 

Online route APIs. An online route API has 

access to current traffic information. It takes 

a route request as input and then returns a 

route along with travel times on the request 

is an HTTP query string, whose parameters 

contain the origin and destination locations 

in latitude-longitude, as well as the travel 

mode. In this example, the origin is at 

(44:94033;_93:22294), the destination is at 

(44:94198;_93:23722), and the user is at 

‘driving’ mode.  The response is an XML 

document that stores a sequence of route 

segments from the origin to the destination. 

Each segment, enclosed by <step> tags, 

contains its endpoints and its travel time by 

driving (see the <duration> tags).  The 

segment in this example takes 8 seconds to 

travel. We omit the remaining segments here 

for brevity. Besides, the XML response 

contains the total travel time on this route 

(the sum of travel times on all segments). 

Query processing algorithms. Thomsen et 

al. study the caching of shortest paths 

obtained from online route APIs. They 

exploit the optimal son cached paths to 

answer shortest path queries. As we 

discussed in the introduction and verified in 

experiments, this property cannot 

significantly reduce the number of route 

requests in our problem. Also, they have not 

studied the processing of range/KNN 

queries; the lower/upper bound techniques. 

It enables the LBS to process KNN 
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queries by using online route APIs. To 

reduce the number  of route requests (for 

processing queries), exploits the maximum 

driving speed VMAX and the static road 

network GS (with only distance 

information) stored  at the LBS. Upon 

receiving a KNN query from user q, the 

LBS first retrieves K objects with the 

smallest network distance from q and issues 

route requests for them. Let g be the Kth 

smallest current travel time (obtained so 

far). The LBS inserts into a candidate set C 

the objects whose network distance to q is 

within g _ VMAX. Next, groups the points 

in C to road junctions, utilizes historical 

statistics to order the road junctions, and 

then issues route requests for junctions in 

above order. However, they do not exploit 

the rich information of routes 

that are specific in our problem. In our 

problem, the  exact route from q to p reveals 

not only the current travel  time to p, it may 

also provide the current travel times to  other 

objects p0 on the route, and may even offer 

tightened  lower/upper bounds of travel 

times to other objects. 

3 PROBLEM STATEMENTS 

In this section, we first describe the system 

architecture and then formulate the 

objectives of our problem.  System 

architecture and notations. In this paper, we 

adopt the system architecture as depicted. It 

consists of the following entities:   Online 

Route API. Examples are: Google/Bing 

route APIs. Such API computes the shortest 

route between two points on a road network, 

based on liv. It has the latest road network G 

with live travel time information. _ Mobile 

User. Using a mobile device (smartphone), 

the user can acquire his current geo-location 

q and then issue queries to a location-based 

server. In this paper, we consider range and 

KNN queries based on live traffic.  _ 

Location-Based Service/Server. It provides 

mobile users with query services on a data 

set P, whose POIs (e.g., restaurants, cafes) 

are specific to the LBS’s application. The 

LBS may store a road network G with edge 

weights as spatial distances, however G 

cannot provide live travel times. In case P 

and G do not fit in main memory, the LBS 

may store P as an R-tree and store the G as a 

disk-based adjacency list .We then define 

route, travel time, and queries formally. 

 4 QUERY PROCESSING 
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This section presents our approach Route-

Saver for answering queries efficiently. 

First, we discuss the maintenance of the 

time-tagged road network G and the route 

log. Finally, we discuss the applicability of 

our techniques when no local maps are 

available. In subsequent discussion, we drop 

the subscript t in as we only use valid routes. 

4.1 Maintenance of Structures at LBS 

Conservative travel time bounds. Given an 

edge Observe that the lower-bound is 

limited by the euclidean distance of e and 

the maximum driving speed. 

VMAX: (1) On the other hand, the upper-

bound ¼ 1 because the travel time one can 

be arbitrarily long in case of traffic 

congestion. Structures. We employ a route 

log L and a time-tagged network G in the 

LBS.  The route log L stores all routes 

obtained from an online   route API within 

the last d time units, as described. Recall 

from that the timestamp of a route indicated 

by its subscript t. Assume that we use d ¼ 2 

in Fig. 4a. At time tow ¼ 4, L keeps the 

routes obtained during time 2-4. To support 

query operations efficiently,  

4.2 Exact Travel Times and Their Bounds 

In this section, we exploit the time-tagged 

road network G and the route log L to derive 

lowers and upper bounds of travel times for 

data points. As we will elaborate soon, these 

bounds enable us to save route requests 

during query processing. L contains only 

valid routes (not yet expired). For the time 

tagged network G, solid edges are valid 

while dotted edges are not.  

4.3 Range Query Algorithm 

In this section, we present our Route-Saver 

algorithm for processing a range query. It 

applies the travel time bounds discussed 

above to reduce the number of route 

requests. To guarantee the accuracy of 

returned results, it removes all expired 

routes CT in L. The algorithm first conducts 

a distance range search to obtain a set C of 

candidate points. Two phases to process the 

candida 

4.4 KNN Query Algorithm 

we extend our Route-Saver algorithm for 

processing KNN queries. We will also 

examine suitable orderings for processing 

candidates.  Unlike range queries, KNN 
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queries do not have a (fixed)  travel time 

limit T for obtaining a small candidate set. 

Instead, we first compute a (temporary) 

result set R so that it contains K candidates 

with the smallest. Recall that we can obtain 

these bounds/values for all candidates 

efficiently by traversal on G. Let g be the 

largest R. Having this value g, we can prune 

each candidate p that satisfies, as it cannot 

become the result. The pseudo-code of our 

KNN algorithm. First, we initialize the 

candidate set C with the data set P, insert K 

dummy pairs (with 1 travel time) into the 

result set R, and set g to the largest travel 

time in R. The algorithm consists of three 

phases. In the first phase, it obtains g by 

using the idea discussed above. In the 

second phase, it prunes candidates whose 

lower bounds or exact times are larger than 

g. In the third phase, it examines the 

candidates according to a certain order and 

issues route requests for them. The 

algorithm terminates when the candidate set 

contains exactly K objects, and then reports 

them as query results.  

4.5 Applicability of Techniques without 

Map 

In this section, we discuss how to adapt the 

Route-Saver in case the LBS cannot obtain 

the same map G used in the route service. 

We observe that, if the LBS uses the map 

G0 which are not the same with that used in 

route services, bounding travel times G can 

be over-estimated.  For example, if the real 

shortest path from q top is missing local map 

G0, then it is possible that Route-Saver 

calculates a   higher G for p and mistakenly 

prunes it from results.  Therefore, the LBS 

are not allowed to use inaccurate maps. In 

case that the LBS cannot access to the map 

G used. 

5 PARALLELIZED ROUTE 

REQUESTS 

Our objective is to minimize the response 

time of queries. Optimizes the response time 

through reducing the number of route 

requests. In this section, we examine how to 

parallelize route requests in order to 

optimize user response time further. We 

propose two parallelization techniques that 

achieve different tradeoffs on the number of 

route requests and user response time. The 

execution of algorithms follows a sequential 

schedule. The user response time (i) the time 



INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND    ADVANCED RESEARCH IN COMPUTING  

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016                        ISSN: 2320-1363 
 

  8 
                                                                        

 

spent on route requests and (ii) local 

computation at the LBS (in white).  

Consider the sequential schedule in. An 

experiment reveals that the user response 

time is dominated by the time spent on route 

requests. Let a slot be the waiting period to 

obtain a route from the route API.2 the 

sequential schedule takes five slots for five 

route requests. Intuitively, the LBS may 

reduce the number of slots by issuing 

multiple route requests to a route API in 

parallel.  a parallel schedule with two slots; 

each slot contains three route requests issued 

in parallel. Although parallelization helps 

reduce the response time, it may prevent 

sharing among routes and because extra 

route requests as we will explain later. 

Existing parallel scheduling techniques have 

not. Exploited this unique feature in our 

problem. We also want to avoid extra route 

requests because a route API may impose a 

daily route request or charge the LBS based 

on route requests. We proceed to present 

two parallelization techniques.  They 

achieve different tradeoffs on the number of 

route requests and the number of slots. Our 

discussion focuses on range queries only. 

Our techniques can be extended to KNN 

queries as well. Greedy parallelization. Let 

me be the number of threads for parallel 

execution (per query). Our greedy 

parallelization approach dispatches route 

request to a thread as soon as it becomes 

available. Specifically, we modify as 

follows. Instead of picking one object p 

from the candidate set C we pick m 

candidate objects and assign their route 

requests to m threads in parallel. 

6 EXPERIMENTAL EVALUATION 

In this section, we compare the accuracy and 

the performance of our Route-Saver 

(abbreviated as RS) with an  existing 

method SMashQ. lthough SMQ handles 

only KNN queries, we also adapt it to 

process range queries. Note that SMQ does 

not utilize  any route log to save route 

requests. We also consider an  extension of 

SMQ, called SMQ_, which keeps the routes 

within expiry time into a route log. SMQ_ 

applies only the  optimal sub path property 

and retrieves exact travel times from the log; 

however, it does not apply the  upper/lower 

bounding techniques in this paper. By 

default, RS uses the DESC and DIFF 



INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND    ADVANCED RESEARCH IN COMPUTING  

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016                        ISSN: 2320-1363 
 

  9 
                                                                        

 

orderings for range and KNN queries r 

pectively.   

6.1 Experimental Setting Road networks. 

 For accuracy experiments on real traffic 

data, we will discuss the road network and 

traffic data For the performance and 

scalability study, we obtain three road maps 

in USA its number of route requests and 

user response time (summarizes the default 

values and ranges of parameters used in our 

experiments. The values for data set size. 

The default expiry time d is 10 minutes, 

according. To simulate the arrival of queries, 

we set the default query rate _ to 60 queries/ 

min and uniformly generate query points on 

the road network. This query rate (60 

queries/min) is justified by visit statistics3 

from restaurant and travel guide websites  . 

All methods were implemented in C++ and 

ran on an Ubuntu 11.10 machine with a 3.4 

GHz Intel Core i7-3770  processor and 16 

GB RAM. In experiments, the route log 

contains at most 30,000 routes and occupies 

at most 30 MB. The largest road network 

(Florida) and data set occupies 87  and 1 

MB respectively. Thus, the largest map, 

route log, anddata set can fit in the main 

memory.  

6.2 Accuracy on Real Traffic Data 

In this section, we test the result accuracy of 

the methods on real traffic data, for various 

expiry time d (2, 5, 10, 20 and 30 minutes). 

Other parameters are set to default values. 

Real traffic data. We downloaded historical 

real traffic on  freeways in Los Angeles 

from PeMS.4 The corresponding road 

network contains 17,563 nodes and 17,694 

edges. the travel times on edges are updated 

every 30 seconds. We also conduct this 

experiment with traffic data on other dates, 

and obtain similar results.Accuracy measure. 

Besides the methods discussed before, we 

also consider a baseline method which uses 

only  local distance information to answer 

queries, without issuing route requests. 

 

6.3 Performance and Scalability Study 

For the sake of obtaining the user response 

time in our simulations, we measure the time 

of route requests on Google Directions API. 

On each roadmap, we randomly sample 400 

pairs of points and issue route requests for 
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them to Google Directions API. plots the 

time of each route request versus its length 

(exact travel time), on the Erie  roadmap. 

summarizes the average and standard 

deviation of route request time on all 

roadmaps.  

6.3.1 Temporal Stability 

In this section, we simulate the arrival of 

queries along a 60- minute (1-hour) 

timeline, while fixing all parameters to  

default. Thus, each test uses 60 _ _ ¼ 3;600 

queries. The route log L is initially empty. 

To report temporal behavior, we measure (i) 

the route log size and (ii) the number of 

route requests of each query.  We first 

conduct experiments with uniformly 

distributed queries and data sets. the number 

of routes in L of RS and SMQ_ versus the 

timeline, for range queries. SMQ is not 

plotted here as it does not utilize the log L. 

6.3.2 Effect of Optimization Techniques 

First, we investigate the effectiveness of our 

proposed  lower/upper bound techniques. 

Recall that RS exploits the travel time 

information obtained from recent routes for 

three techniques: (i) retrieve the exact travel 

time of a point p, (ii) prune p by its lower 

bound; p:t_I and (iii) detect p as a true hit by 

its upper bound. 

6.3.3 Scalability Experiments 

As discussed before, in this section, we 

simulate the arrival of queries along 2d-

minute time interval. And we  measure the 

performance in terms of: (i) average number 

of route requests per query in the stable 

period, and  (ii) average user response time 

per query in the stable. 

6.4 Experiments on Google Directions 

API 

We have implemented SMQ, SMQ_ and RS 

with Google Directions  request/response 

format has been described. Due to the daily 

request limit (2,500) for evaluation users .we 

conduct this experiment on the Manhattan 

region .We randomly select 100 POIs5 in 

this region, and generate 100 queries  (along 

a 100-second time period). depicts the 

number of route requests of each query 

versus the timeline, for range queries and 

KNN queries. RS outperforms SMQ and 

SMQ_ on both range queries and KNN 

queries. 
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7 CONCLUSION 

In this paper, we propose a solution for the 

LBS to process range/KNN queries such that 

the query results have accurate travel times 

and the LBS incurs few number of route  

requests. Our solution Route-Saver collects 

recent routes  obtained from an online route 

API (within d minutes). During query 

processing, it exploits those routes to derive 

effective lower-upper bounds for saving 

route requests, and examines the candidates 

for queries in an effective order. We have 

also studied the parallelization of route 

requests to further reduce query response 

time. Our experimental evaluation shows 

that Route-Saver is 3 times more efficient 

than a competitor, and yet achieves high 

result accuracy (above 98 percent).  In 

future, we plan to investigate automatic 

tuning the expiry time d based on a given 

accuracy requirement. This would help the 

LBS guarantee its accuracy and improve 

their users’ satisfaction. 
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